
Vibrational Eigenstates of Four-Atom Molecules: AParallel Strategy Employing the Implicitly RestartedLanczos MethodR. B. Lehoucq, a S. K. Gray, b D.-H. Zhang, c J. C. Light ca Mathematics and Computer Science Division, Argonne National Laboratory,Argonne, IL 60439. Current address: Sandia National Laboratories, MS 1110,P.O. Box 5800, Albuquerque, NM 87185-1110. E-mail: rlehoucq@cs.sandia.govb Chemistry Division, Argonne National Laboratory, Argonne, IL 60439. E-mail:gray@tcg.anl.govc Department of Chemistry, The University of Chicago, Chicago, IL 60636AbstractWe present an approach for determining the vibrational eigenstates of four-atommolecules. The primary representation of the (six-dimensional) eigenstates involvesa �nite basis or quantum number representation, whereas Hamiltonian matrix-vector products are evaluated with the aid of certain grid or discrete variable rep-resentations. This approach leads to computational and memory demands that arewithin acceptable limits. The implicitly restarted Lanczos method, as implementedin the ARPACK suites of codes, is then applied to determine some of the corre-sponding vibrational eigenstates. A distributed-memory parallel implementation ofthe method allows very large symmetric matrix eigenvalue problems|on the orderof N = 2 � 106|to be tackled. The lowest �fty vibrational states of the HOCOmolecule, with zero total angular momentum and even parity, are accurately com-puted on Argonne National Laboratory's IBM SP computer.1 IntroductionThe accurate determination of vibrational eigenstates is a challenging compu-tational problem for manymolecular systems [3,3]. The problem is particularlydi�cult when good zero-order pictures (e.g., normal modes) are not easilyfound or when highly excited states are desired. Two interrelated numericaltasks must be considered:{ determine a suitable �nite representation of the underlying partial di�eren-tial operator or Schr�odinger equation, andPreprint submitted to Elsevier Science 21 October 1997



{ determine the relevant eigenvalues and eigenvectors of the �nite, but gen-erally large symmetric Hamiltonian matrix H that results.When Na � 4 atoms are involved and/or highly excited states are desired, thecomputation can easily su�er from basis set explosion because representationsare typically product ones involving dimensions on the order of N = nF ,where n is on the order of 10 and F , the number of degrees of freedom, is3Na�6 (neglecting overall rotation). A representation that requires n = 10 toaccurately represent the desired states then results in N = 106: Moreover, apoor choice of representation could result in n being signi�cantly larger than10, particularly if highly excited states are to be accurately described.Once the representation is decided upon, the second task, determination ofthe eigenvalues and eigenvectors, may prove to be the computational bottle-neck. For instance, the determination of all the eigenvalues when N � 106 iscurrently not feasible, nor is it desirable because only the lower energetic por-tion of the spectrum, or perhaps some particular spectral range, is typicallyof physical interest. Iterative methods such as the Lanczos method [3] can in-stead be used to determine some of the eigenvalues and eigenvectors. Since theLanczos method requires matrix-vector products with H, our representationmust be such that an application of H to a vector is computationally e�cient.Discrete variable representations (DVRs) [3,3,3] of the Schr�odinger equationare useful because the resulting matrix-vector products are e�ciently evalu-ated. The idea behind a one-dimensional DVR is to de�ne a set of discretepoints that is essentially equivalent to some more standard �nite basis rep-resentation. The computational advantage arises from the fact that one partof the matrix-vector product, the \potential" part, is then well approximatedby a diagonal matrix-vector product. When just one dimension is considered,there is no practical advantage of employing a DVR; but if two or more dimen-sions are being considered, the resulting matrix-vector product scales muchbetter than N2: This improvement occurs because the potential part of thematrix-vector product remains diagonal and the kinetic part factors into blocksassociated with the di�erent dimensions. It is also possible to invoke energeticcut-o�s within a DVR by excluding DVR points that yield potential energiesgreater than some cut-o� value. This strategy reduces N and also the spectralrange. Carrington and co-workers [3,3,3], for example, have developed and ap-plied approaches to molecular vibrational states based on applying the Lanczosmethod to DVR or grid-based Hamiltonian representations with considerablesuccess. Nevertheless, despite the advantages of such DVRs, or variations onthe DVR idea such as potentially optimized [3,3] DVRs (PODVRs), the re-sulting product representations can still be very large.Some applications of DVRs to vibrational eigenstate problems have employedthe sequential truncation-diagonalization (STD) technique [3,3], which avoids2



extremely large matrices by solving a sequence of reduced-dimensional eigen-value problems. The technique �xes one or more of the coordinates in theproblem at their DVR values, and represents the full eigenvalue problem interms of the reduced-dimensional eigenvectors. (The use of a DVR represen-tation makes it particularly convenient to carry out the STD idea.) The use ofenergetic cut-o�s in deciding which reduced-dimension eigenvectors to employcan then lead to manageable e�ective values of N such that, for example, itmay be possible to use standard eigenvalue-eigenvector methods. The STDapproach is an excellent strategy that e�ectively reduces the dimension of theproblem at the cost of additional algorithmic complexity.The main objectives of the present paper are (i) to present an approach forobtaining vibrational eigenstates of four-atom systems using some of the ideasoutlined above that, with the aid of parallel computers, can be applied tochallenging problems and (ii) to give an illustration, with a nontrivial example,of how the approach works. In particular, we retain, in part, the idea of usingDVRs or grid representations, but explore how a Lanczos method appliedwithin a parallel computing environment may be used.We employ an implicitly restarted Lanczos method (IRLM) as implementedin the parallel implmentation [3] of the ARPACK [3] software package. Theuse of an implicitly restarted algorithm yields the corresponding eigenvectorsdirectly. Such an approach can be more demanding in terms of computer mem-ory than the straightforward Lanczos method. Therefore, to keep computermemory requirements down, we retain a quantum number (or �nite basis)representation as the primary representation, and we employ the DVR or gridrepresentations only as intermediate stages to facilitate the evaluation of thematrix-vector products.Recently, Hayes and co-workers [3,3] have reported impressive calculations ofthe rovibrational eigenstates of certain three-atom systems using a combina-tion of DVR/STD methods for the representation of the problems, and theIRLM for solving the resulting eigenvalue problems. A parallel implementationof the IRLM was shown to yield an e�cient procedure for determining manyeigenstates of a di�cult molecular problem (HO2 with total angular momen-tum J > 0). Our approach thus shares some similarities with this work. Themain di�erences are that our focus is on larger, four-atom problems and weuse a simpler combined quantum number/DVR Hamiltonian representation.We illustrate the combined approach for a potential model of the HOCOmolecule [3,3]. This system is challenging for at least two reasons. First, threerelatively heavy atoms are present, leading to some relatively small de Brogliewavelengths. Second, both cis and trans isomers (with di�erent e�ective nor-mal mode frequencies) are important in the eigenstates we will determine. Infact, our calculations represent the best (and largest) theoretical vibrational3



eigenstate estimates for HOCO currently available.Section 2 describes our representation of the four-atom Hamiltonian matrix interms of DVRs. Section 3 outlines the IRLM and our parallel implementation.Section 4 discusses the application to HOCO. Section 5 presents some briefconcluding remarks.2 Representation of the Hamiltonian Operator and Matrix-VectorProductIn this section we discuss both grid and quantum number representations.2.1 Finite Basis and Grid Representations of the Hamiltonian OperatorWe consider a system of four atoms A, B, C, and D interacting via a Born-Oppenheimer potential energy function V. While it is possible to considernonzero total angular momenta J, we restrict attention to the case J = 0.In this case there are six internal degrees of freedom. Diatom-diatom Jacobicoordinates are employed. The three radial degrees of freedom are r1, theinternuclear distance between A and B; r2, the internuclear distance betweenC and D; and R, the distance between the center of masses of AB and CD.The three angular degrees of freedom are �1, the angle between the vectorsassociated with r1 and R; �2, the corresponding angle associated r2 and R; and�, the out-of-plane torsional angle [3,3]. The time-independent Schr�odingerequationH k = Ek k ; k = 1; 2; � � � ; (1)for the vibrational eigenfunctions  k =  k(R; r1; r2; �1; �2; �) and energies Ek,involves the Hamiltonian operator (with �h = 1) [3,3]H =� 12� @2@R2 � 12m1 @2@r21 � 12m2 @2@r22+ ĵ2122�R2 + ĵ212m1r21 + ĵ222m2r22 + V(R; r1; r2; �1; �2; �) ; (2)with masses � = (mA + mB)(mC + mD)=(mA + mB + mC + mD), m1 =mAmB=(mA+mB) andm2 =mCmD=(mC+mD). (The ĵ21 , ĵ22 , and ĵ212 operatorsinvolve the angular variables and need not be explicitly de�ned here.)The above Hamiltonian operator H must be (approximately) represented insome �nite matrix representation,H. Two representations are employed: (i) a4



quantum number (or �nite basis) representation, H, and (ii) a grid (or DVR)representation, Hg. The quantum number representation, which is based onzero-order potentials adapted to the speci�c potential V of interest, is our ba-sic representation. For example, the distribution of the problem over proces-sors and the iterative diagonalization procedure are all done within the quan-tum number representation. However, the actual (Hamiltonian) matrix-vectorproduct, the key computational bottleneck, is evaluated using two represen-tations, the quantum number representation for one part of the matrix-vectorproduct, and the DVR representation for another part of it (due to the po-tential). This combined approach leads to the matrix-vector product scalingbetter than N2:2.2 Quantum Number RepresentationWe may formally think of the quantum number representation in terms ofabstract kets jn; v1; v2; j1; j2; j12i, with projection onto coordinate spacehR; r1; r2; �1; �2; �jn; v1; v2; j1; j2; j12i = �n(R)�v1(r1)�v2(r2)Fj1;j2;j12(�1; �2; �):The basis functions for R, r1 and r2 are each based on suitable zero-order po-tentials, in other words are determined by the solution of the one-dimensionalSchr�odinger equations"� 12� @2@R2 + VR(R)# �n(R) = En�n(R); (3)"� 12m1 @2@r21 + V1(r1)#�v1(r1)= Ev1�v1(r1); (4)"� 12m2 @2@r22 + V2(r2)#�v2(r2)= Ev2�v2(r2); (5)where VR, V1, and V2 are de�ned, for example, by suitable one-dimensionalcuts of the full potential V: We denote the number of radial basis functionsused for R, r1, and r2 by NR, N1, and N2, respectively.The angular functions Fj1;j2;j12(�1; �2; �) are rotational eigenfunctions consis-tent with zero total angular momentum that are also chosen to be eigen-functions of ĵ21, ĵ22 , and parity. They are certain weighted sums of sphericalharmonic functions associated with the two diatomic units. (Both j1 and j2have allowed values 0; 1; 2; : : : and for J = 0 the allowed values of j12 are be-tween jj1 � j2j and j1 + j2. See Refs. [3,3] for further details.) We denote thetotal number of angular basis functions Fj1;j2;j12 employed in our calculationsas NA. 5



Thus, in the quantum number representation a wavefunction is approximatedas  = Xn;v1;v2;j1;j2;j12 cn;v1 ;v2;j1;j2;j12�n�v1�v2Fj1;j2;j12; (6)where all sums are �nite. The act of the Hamiltonian matrix in this quantumnumber representation on the vector c is denoted Hc:2.3 Grid RepresentationsLet the kets jRi; r1j; r2k; �1a; �2b; �ci denote a formal grid or DVR, where i, j,k, a, b, and c are discrete indices for the corresponding grid points or DVR.The Ri, r1j, and r2j points are taken to be those consistent with the associatedbasis function representations given above, following the ideas of Echave andClary. Thus, the coordinate matrices associated with R, r1, and r2 are diago-nalized in the respective basis functions (�n, �v1, and �v2), with the eigenvaluescorresponding to the desired (PO)DVR grid points. Since the PODVR pointsare adapted to the potential at hand, they lead to a particularly compactand accurate representation. The angular grid representation is a product onedetermined by Gauss-Legendre quadrature points for �1 and �2, and evenlyspaced (Chebyshev or Fourier) points for �: (The e�cient representation ofnondirect product basis functions such as spherical harmonics, and thus ourangular functions, via angular grids is, of course, a di�cult problem.)If we represent Vc, the potential part of the matrix-vector product in thequantum number representation, by employing the above-mentioned angularquadratures, we can then rewrite the matrix-vector product as a three-stepprocess. First, transform the basis set to the grid representation; second, mul-tiply by the diagonal potential matrix; third, transform back to the basisrepresentation. The associated transformation matrices between the quantumnumber and angular grid representations thus involve the quadrature weightsand the basis functions Fj1;j2;j12 :An important reason for our use of an intermediate grid representation, as op-posed to simply using just the quantum number or �nite basis representation,lies in the angular part of the problem. (If one were to employ only a basisrepresentation, there would be on the order of N1N2NRN2A associated angularpotential matrix elements to store. As the total number of angular functions,NA, becomes large, e.g., on the order of 1000 or more, the number of matrixelements can exceed typical computer memory limitations. Of course, if oneadopts an STD approach [3], this situation can be improved.)Thus in the grid representation, the actual wavefunction is formally approxi-6



mated as = Xi;j;k;a;b;c di;j;k;a;b;cfi(R)fj(r1)fk(r2)ga;b;c(�1; �2; �); (7)where fi, fj, fk, and ga;b;c involve the underlying basis function representationsand transformation functions.Let MA denote the total number of angular grid points, and let M1, M2,and MR denote the number of radial PODVR grid points associated with r1,r2, and R. We note that better accuracy in the computed eigenvalues canbe obtained by employing Mi > Ni, where Ni is the associated number ofunderlying basis functions in the quantum number representation. This is notsurprising in relation to the angular degrees of freedom because a productgrid representation is being employed to describe a nondirect product basisangular set involving spherical harmonics [3,3]. Furthermore, in practice (Sec.4.1) we impose an energetic cut-o� on the basis functions to be included thatreduces NA and further accentuates the di�erence between MA and NA.Regarding the PODVRs used to represent the radial variables, it is also some-times useful to employ Mi > Ni because the associated quadratures over thepotential are more accurately computed. (This is related to the fact that theunderlying basis functions in a PODVR representation are not classical or-thogonal polynomials, and so the procedure is not the same as employing ahigh-order Gaussian quadrature.) Allowing for Mi > Ni leads to rectangular(as opposed to square transformation) matrices with more rows than columnsbut poses no real technical di�culties. The bene�t is more accuracy for thesame computer memory storage. This strategy also does not alter the spectralrange of the Hamiltonian matrix, and so the number of iterations requiredto obtain the energy levels remains approxmately the same. The Hamiltonianmatrix remains a real symmetric matrix even when a rectangular transforma-tion matrix Z is involved.2.4 Evaluating the Matrix-Vector ProductOur goal is the evaluation of the Hamiltonian matrix-vector product in thequantum number representation, Hc: One can view the use of the grid repre-sentation (where the coe�cients of the wavefunction are denoted by d) as anintermediate step in obtaining Hc:The idea behind evaluating the matrix-vector product is most easily under-stood by a one-dimensional example. Consider a 1-D Hamiltonian operatorĥ = t̂+v(x), where t̂ is a di�erential kinetic energy operator and v(x) a poten-tial function. Let jnxi be some quantum number representation corresponding7



to the eigenstates of the zero-order Hamiltonian operator ĥo = t̂+ vo(x), thatis, ĥojnxi = enx jnxi: Then, h is the matrix de�ned by hn0xjhjnxi, and theevaluationhc = hoc+ (v� vo)c (8)follows. Since the quantum number representation is used for ĥo, it is a diag-onal matrix with elements given by the corresponding eigenvalues enx. There-fore, hoc is computationally fast. While v�vo is a full matrix in the quantumnumber representation, it may be taken to be a diagonal matrix in the gridrepresentation based on ho: Thus, we introduce a DVR jxii which is related tothe quantum number represenation by a transformation matrix Z such thatd = Zc takes c in the quantum number representation and yields the corre-sponding amplitudesd in the grid representation. The algorithm for evaluatinghc is then(i) evaluate the act of the diagonal matrix ho on c and save it as c0,(ii) transform from c to d via d = Zc,(iii) evaluate the act of the diagonal matrix gg�vgo on d via d00 = (vg�vgo)d,(iv) transform from d00 to c00 using ZT : c00 = ZTd00, and(v) add c00 to c0, which yields the desired result.Written together, the real symmetric nature of the e�ective potential portionof the Hamiltonian ishc = hoc+ ZT(vg � vgo)Zc: (9)If, for simplicity, we assume that Nx basis functions and grid points are in-volved, the resulting matrix-vector product still scales as N2x , whether it isdone in the above way or directly in the quantum number representation.Therefore, nothing is really gained by carrying out the matrix-vector prod-uct this way. However, when the problem is multidimensional, such as thepresent one, considerable numerical e�ciency is gained. This occurs becausethe transformation matrices in the above procedure are direct products. Forinstance, if two coordinates are involved, say x and y, the numerical scalingof the matrix-vector product is proportional not to (NxNy)2 but to NxN2y+NyN2x .The full six-dimensional matrix-vector product required for our problem isa straightforward generalization of the one- and two-dimensional discussionabove. The quantum number representation is then de�ned by NR basis func-tions associated with R, N1 basis functions associated with r1, N2 basis func-tions associated with r2, and NA angular basis functions. The correspondinggrid representations consist of MR points in R, M1 points in r1, M2 points inr2, and MA points in the three angular variables. Transformation matrices Zi(which are rectangular whenMi > Ni) associated with each degree of freedom8



link basis and grid representations. The major computational bottlenecks inthe matrix-vector product arise in applying the transformation matrices. Weremark that the operation count of our approach is a complicated expressioninvolving the Ni and Mi. However, the transformations between angular basisand quadrature points represent about 80% of the numerical e�ort.3 Implicitly Restarted Lanczos Method and Parallel Implementa-tionWe brie
y review the Lanczos method, then discuss how to implicitly restartit, and �nally how to implement a parallel version.3.1 Implicitly Restarted Lanczos MethodThe Lanczos method is a well-known method for calculating a few of theextremal eigenvalues of a large symmetric matrix. Given an initial starting(unit) vector q1, the method proceeds by computing the familiar three-termrecurrence�jqj+1 = Hqj � �jqj � �j�1qj�1; where �0q0 = 0 and j � 1: (10)The eigenvalues of the symmetric tridiagonal matrix Tj consisting of �j'sand �j's on the diagonal and subdiagonal, respectively, are used to estimatethose of H: The extremal eigenvalues of Tj quickly provide excellent estimatesto those of H: Since the method only requires knowledge of H through itsapplication to a vector, the method is well suited for large-scale eigenvalueproblems.Equation (10) may be rewritten in matrix form asHQj = QjTj + �jqj+1eTj ; (11)where Qj = �q1 q2 � � � qj � ; Tj is the associated tridiagonal matrix, and eTjis the transpose of the last column of the order j identity matrix. We callthis a Lanczos reduction of order j: The Lanczos vectors q1; : : : ;qj provide anorthogonal basis for the Krylov space fq1;Hq1; : : : ;Hj�1q1g, and thus Tj isthe orthogonal projection ofH onto the column span of this Krylov space. TheLanczos method is a generalization of the power method in that a sequenceof iterates is used to approximate eigenvalues of H:Order the eigenvalues �i of Tj so that �1 � �2 � � � � � �j; and denote thecorresponding eigenvectors si: Our goal is to present an algorithm for com-9



puting k approximate eigenpairs �i;Qjsi(= yi) that satisfy the following twoconditions:(i) kHyi � yi�ik � �U for i = 1; : : : ; k and(ii) yTi yj = O(�M ) when i 6= j, and one otherwise.The user-speci�ed tolerance and machine precision are denoted by �U and�M , respectively. The �rst condition is that of accuracy, the second that of(numerical) orthogonality.It is well known [3, pp. 479{485] that roundo� errors cause the Lanczos vectorsto lose orthogonality. However, Paige [3] showed that the loss of orthogonalityoccurs precisely when an eigenvalue of Tj is close to one of H: In fact, theLanczos vectors lose orthogonality in the direction of the associated approxi-mate eigenvector. Moreover, failure to maintain orthogonality results in spu-rious copies of the approximate eigenvalue produced by the Lanczos method.We brie
y review the traditional implementations of the Lanczos method thathave emerged and their method for dealing with the loss of orthogonality.{ Implementations based on selective and partial orthogonalization [3,3]. Thesetechniques carefully monitor the loss of orthogonality and perform addi-tional orthogonalization steps only when necessary.{ A direct implementation of the three-term recurrence [3,3] with no addi-tional orthogonalization steps.{ Orthogonalization of each new Lanczos vector against all the vectors gen-erated.The careful implementation of the �rst of these approaches is nontrivial. Thesecond approach uses a strategy to determine whether the copies producedby the Lanczos method are spurious or correspond to a degenerate eigenvalueof H: However, this approach may be used only for computing eigenvalues.Further computation is required if eigenvectors are of interest.The third approach removes the complication associated with spurious copies,and eigenvectors are easily computed. Its drawbacks are the cost of main-taining orthogonality (on the order of Nm2 
oating-point operations for mLanczos vectors) and storing the Lanczos basis vectors. If m is kept to a mod-erate size, the cost of maintaining the orthogonality of the Lanczos vectors isnot a concern. We emphasize that the cost of maintaining full orthogonalityof the Lanczos basis vectors may represent a minor cost (say, less than 5%) ofthe total cost in computing the eigenvalues and eigenvectors if m is not largeand the cost of computing matrix-vector products Hc is large. Our numericalexperiments will illustrate this behavoir.Suppose that we are able to compute m steps of (10) where m is chosen sothat the cost of maintaining the orthogonality Lanczos vectors to machine10



precision is small. Since we are interested in the k smallest eigenvalues ofH; consider starting another Lanczos method with some linear combinationof y1; : : : ;yk: This restarting of the Lanczos method is continued until the ksmallest eigenvalues of Tm satisfy the two aforementioned accuracy conditions.The motivation is that if y1; : : : ;yk are basis vectors for an eigenspace of H;then �k = 0 and the eigenvalues of Tk are those of H:An equivalent manner in which to restart the Lanczos method with somelinear combination of y1; : : : ;yk is by applying the matrix polynomial (H ��k+1I) � � � (H � �mI) to the starting vector q1: This removes the componentsfrom q1 corresponding to �k+1; � � � ; �m and speci�es the linear combination ofy1; : : : ;yk: However, if matrix vector products with H are expensive, then theapplication of this polynomial �lter is expensive.Sorensen [3] derived an elegant scheme for applying any polynomial �lter ofdegree p(� m) without direct application ofH:Moreover, a lengthm�p Lanc-zos reduction remains. We illustrate the scheme for a degree one polynomial.By subtracting �Qm from a length m Lanczos reduction, we have(H� �I)Qm = Qm(Tm � �I) + �mqm+1eTm: (12)Now, we compute the orthogonal factorization UR = Tm � �I, where Uis an orthogonal matrix and R is upper triangular matrix. Substituting theorthogonal factorization into (12) results in(H� �I)Qm = QmUR+ �mqm+1eTm: (13)A simple derivation givesTmU = U(RU+ �I) = UT+m; (14)where T+m is an updated symmetric tridiagonal matrix. (Note that (14) is onestep of the shifted QR algorithm [3, pp. 144{145].) Next, postmultiplying theoriginal length m Lanczos reduction with U results inHQmU = QmTmU+ �mqm+1eTmU = QmUT+m + �mqm+1eTmU; (15)where we used (14). Unfortunately (15) is no longer a length m Lanczos re-duction. Because all the elements of U below the subdiagonal band are zero(Tm��I is tridiagonal), dropping the last column of (15) gives a length m�1Lanczos reduction.By equating the �rst m � 1 columns on both sides of (13), we see that theleading m� 1 columns of the updated Lanczos basis vectors QmU provide anorthogonal basis for the same space as (H� �I)Qm�1. (Note that the leadingsubmatrix of order k in R contains the orthogonalization (Gram{Schmidt)coe�cients.) In particular, the updated starting vector has been replaced by11



(H � �I)q1��1, where � is the leading diagonal element of R. Note that if� = 0, then a step of subspace iteration has been implicitly applied; this isanalogous to the connection between the QR algorithm and subspace iteration.See [3] for further details.The above scheme can be applied with each of the unwanted eigenvalues�k+1; � � � ; �m: A length m�p = k Lanczos reduction results where the k eigen-values of Tk are the wanted eigenvalues �1; � � � ; �k|the best k approximationsto the smallest eigenvalues of H: Equivalently, we have implicitly applied thematrix polynomial (H� �k+1I) � � � (H� �mI) to the leading k Lanczos vectors.Polynomial �lters of degree no more than m may be applied in this fashion.Since the application of the polynomial �lter is accomplished with an implicityshifted QR algorithm on Tm; the resulting algorithm is called the implicitlyrestarted Lanczos method (IRLM). In summary, the advantages of an IRLMinclude{ �xed storage requirements by �xing a value of m,{ the ability to compute eigenvectors orthogonal to machine precision (sincem is of modest size),{ application of the polynomial �lter 	(H) (of degree no larger than m) with-out the need for computing additional matrix vector products with H, and{ incorporation of the well-understood numerical and theoretical behavior ofthe QR algorithm.The last point is important because it allows the possibility of constructinggeneral-purpose and reliable software for the large-scale eigenvalue problem.The reader is referred to [3] for further details.3.2 Parallel StrategySuppose we have a length j � 1 Lanczos reduction HQj�1 = Qj�1Tj�1 +�j�1qjeTj�1 and want to increase the length by one. The Lanczos matrix Qj iseasily computed by appending qj to Qj�1, and the j � 1 subdiagonal elementof Tj is �j�1: The computational burden is in computing the following threetasks:(i) w Hqj,(ii) g QTj w,(iii) f  w �Qjg (and thus �j = kfk and qj+1 = f=�j).Steps (2) and (3) are performed so that the columns of Qj are orthogonalto qj+1. The vector f is the projection of w onto the orthogonal complementof the Krylov space fq1;Hq1; : : : ;Hj�1q1g: In practice, Steps (2) and (3) are12



repeated when kfk < p2=2kHqjk; see [3,3] for further details. Note that gis the jth column of Tj; �j�1 and �j are the last two elements of g, and theleading j � 2 elements are equal to zero.The parallel implementation [3] of IRLM in ARPACK uses a data-parallelmodel of computation. So that large eigenvalue problems can be solved, therows of the Lanczos matrix Qj are distributed (w and f are also conformablydistributed) among the available processors. Because of the data distribution,parallelism is exploited during the computation of the matrix-vector productHqj. Communication among the processors is required only for Step (2) andthe computation of kfk and kwk. Since each processor requires g for Step (3),commincation is accomplished with global reductions that are broadcast toevery processor. Thus, every processor has a copy of Tj and so performs theimplicitly shifted QR algorithm needed for the implicit restarting.Equation (6) suggests a straightforward data distribution over the radial vari-ables in the quantum number (or �nite basis) representation. Since H has asimple block structure that operates on vectors of length NA, the paralleliza-tion scheme spreads this work among the processors. (The application of theHamiltonian matrix is distributed among at most NRN1N2 processors.) Ourparallel strategy involves distributing consecutive rows of the Lanczos vectorsin small multiples (at most 3) of size NA among the available processors.4 Vibrational States of HOCOIn this section we discuss the application of our model to HOCO.4.1 Potential Model and Implementation DetailsThe four-atom system HOCO is of considerable theoretical and experimentalinterest because intermediate HOCO complexes are believed to play a signi�-cant role in the important combustion reaction OH + CO ! H + CO2. See,for example, the discussion and references in [3,3], Here we focus on deter-mining some of the (bound) vibrational states of HOCO. This is a challengingtheoretical problem owing to the importance of two energetically close isomersconsistent with trans and cis conformations. Thus, normal mode descriptionswelded to one particular equilibrium geometry are not appropriate, particu-larly for excited vibrational states. Furthermore, the presence of three rela-tively heavy atoms makes quantum mechanical studies of this system di�cult,owing to the underlying small de Broglie wavelengths involved. A reasonablepotential energy surface based on ab initio electronic structure data is readily13



available [3,3]. (A newer surface [3] has been devised that improves some ofthe older surface's energetics. Our main goal is to illustrate the utility of ourcomputational method, and so the older surface [3,3] su�ces for our purposes.)In relation to the notation of Section 2, R now denotes the distance betweenthe centres of mass of OH and CO; r1 and r2 denote the OH and CO internu-clear distances; and �1 , �2, and � are the angular variables associated with OHand CO and the torsional angle, respectively. The radial DVR representationsinvolve zero-order potentials based on the full potential in the region of theHOCO trans and cis isomers. The OH, CO and OH,CO zero-order potentials,used to de�ne the radial grid representations, were chosen to be functions typ-ical of the potential variation about the cis and trans equilibrium geometries.(Naturally there is no unique way of establishing such zero-order potentials.We simply �t Morse-like potential functions to the average of the potentialvariation in the cis and trans forms.)We brie
y point out a few features of the potential and related details. See [3,3]for a more thorough discussion. We employ an energy scale such that the po-tential energy is zero with OH + CO separated (large R limit) and with inter-nuclear distances corresponding to minima in the relevant OH and CO partsof the potential. The potential energy minimum is a trans-HOCO structurewith potential energy �5:92 � 10�2 a.u. (�1:61 eV or �12990 cm�1). A secondminimum, corresponding to cis-HOCO, exists at an energy of just 0:4 � 10�2a.u. (900 cm�1) above the trans minimum, that is, at an energy of �5:5 � 10�2a.u. with the energy zero as de�ned above. The barrier between trans and cisforms has potential energy �4:74 � 10�2 a.u. (Relative to the trans minimum,the barrier is 1:18 � 10�2 a.u.)The order of the Hamiltonian matrix in the quantum number representationis N = NRN1N2NA: Numerical experiments (see below) are carried out totest convergence of the computed energy levels with respect to the numberof basis functions (NR, N1, N2) associated with the three radial degrees offreedom, and the number of basis functions (NA) associated with the angulardegrees of freedom. It is also necessary to test convergence with respect to thecorresponding numbers of grid points Mi in the case of the radial variableswhere we allow Mi � Ni for i = R, 1 and 2: We note that NA, in turn,is determined by the maximum number of j1 and j2 states employed, viastandard angular momentum considerations [3,3]. Increasing the maximumallowed j1, jmax1 , or the maximum allowed j2, jmax2 , can signi�cantly increaseNA:We also employ certain energy cut-o�s, which do not appreciably a�ect thecomputed eigenstates of interest. The potential energy is cut o� at 0.1 a.u.(� 22000 cm�1), which is well above the energies of interest and correspondsto the limit of unbounded OH + CO states. This cut-o� signi�cantly reduces14



the spectral range (distance between maximum and minimum eigenvalues).Because the spectral range is modest (on the order of three orders of magni-tude), the minumum (leftmost) eigenvalues of the discrete Hamiltonian maybe computed with a Lanczos method that uses only matrix-vector productsHc:It is also convenient to employ a zero-order rotational energy cut-o�, whicha�ects NA, the total number of angular basis functions, by excluding any(j1; j2) combination that leads to the associated rigid rotor energy B1j1(j1 +1)+B2j2(j2+1), exceeding some value. Estimates B1 and B2 of the diatomicrigid rotor constants associated with OH and CO are used. (A rotational cut-o� energy of 0:026 a.u., or 0.7 eV, was found to yield converged results, whichwe have checked by comparison with smaller energy cut-o�s.)4.2 Convergence of the First Fifty-Two EigenstatesSix experiments were run to compute the lowest 52 vibrational states of thefour-atom molecule HOCO. The largest matrix eigenvalue problem was oforder 2; 278; 044:For the largest eigenvalue problem, we set NA = 14; 062, with individualrotational quantum numbers up to jmax1 = 28 and jmax2 = 54: For the radialdirections, NR = 9, N1 = 6 and N2 = 3: The associated numbers of radialquadrature points were MR = 9, M1 = 7, and M2 = 5, and the total numberof angular quadrature points was MA = 46,255.This problem took approximately 10:7 hours using 54 nodes of the IBM SPsystem at Argonne National Labratory. Since 54 processors were used, eachprocessor stored 42; 186 (= 3 � NA) rows of the Lanczos basis vectors. (Recallthat the data distribution is done within the quantum number representation,and so up to NRN1N2 = 162 processors could be employed. However, given thecon�guration of the IBM SP, at most 60 processors were available.) ARPACKuses the MPICH [3] implementation of MPI [3] for communication among theprocessors.Table 1 presents our best results for the lowest 52 energy levels (J=0, evenparity) of HOCO with the assumed potential function in [3,3]. We emphasizethat this study represents the �rst accurate determination of the vibrationaleigenstates of HOCO. Some estimates of the �rst twenty vibrational energylevels have been published [3]. However, these were based on a 5D modelthat included only CO zero-point energy e�ects, and these levels, particularlybeyond the �rst few levels, are not very accurate. Each of the �rst twentyenergies in Table 1 is, in fact, lower than its corresponding counterpart in [3],with some of our higher energies lower by 7 � 10�4 a.u. (150 cm�1), which15



Table 1HOCO energy levels relative to the ground vibrational state E1 = �8354:40 cm�1:1 0 14 1710.09 27 2242.55 40 2510.392 550.28 15 1726.35 28 2248.04 41 2537.763 553.19 16 1777.18 29 2273.97 42 2540.664 1044.23 17 1850.25 30 2312.55 43 2546.725 1092.03 18 1855.85 31 2314.01 44 2596.976 1098.84 19 1950.20 32 2360.05 45 2613.817 1180.14 20 1960.82 33 2362.17 46 2639.628 1218.11 21 2030.75 34 2370.88 47 2642.369 1329.64 22 2057.10 35 2382.47 48 2674.1210 1520.28 23 2076.02 36 2388.86 49 2676.6411 1557.32 24 2110.35 37 2391.59 50 2732.1112 1595.25 25 2146.34 38 2414.37 51 2744.8213 1618.92 26 2212.85 39 2472.09 52 2768.75is consistent with our more accurate calculations. (A detailed comparison ofthe results of the two calculations is beyond the scope of the present paper.)We have inspected some of the corresponding eigenstates, but have not madea detailed study. (The inspection of such multidimensional eigenstates is adi�cult matter because one must consider a variety of cuts and averages overthe six-dimensional space.) The ground vibrational state is, as expected, atrans-HOCO structure. It is consistent with a zero-point energy of � 2:1 �10�2a.u. (4630 cm�1). However, the excited states may be cis or trans-like orperhaps exhibit features consistent of the two isomers. This is because ofthe small 0:33 � 10�2 a.u. (726 cm�1) energy di�erence between cis and transisomers, and a relatively low barrier connecting the two isomers. We plan topresent a more detailed discussion of the eigenstates in future work.We also mention that of the remaining �ve experiments, three di�ered onlyin the number of angular functions used from our large problem. The threeexperiments set NA equal to 8; 481, 10; 115 and 12; 434: The order of the cor-responding discrete Hamiltonian were 1; 373; 922, 1; 638; 630 and 2; 014; 308,respectively. The total time needed to compute the 52 eigenpairs was 6:2, 7:6,and 8:9 hours. This shows that our parallelization scheme scales linearly withthe number of angular basis functions. For all these experiments, the low-est vibrational levels agreed to �ve signi�gant digits, and the highest levelsagreed to three signi�gant digits. The remaining two experiments used discrete16



Hamiltonians of order 1; 000; 000:4.3 Computational Details Associated with IRLM in P ARPACKA few remarks are in order regarding the use of the parallel implementationof IRLM. For all six experiments, the IRLM maintained the numerical or-thogonality of all the Lanczos vectors to machine precision (approximately 15decimal digits). This was accomplished by reorthogonalizing at every step ofthe Lanczos reduction whenever necessary.The size m at which the Lanczos reduction was restarted never exceeded avalue of 82: The default strategy of the ARPACK implementation of IRLMapplied the minimum of (m� k)=2 and m� k � s unwanted eigenvalues perrestart where s denotes the number of eigenvalues that satisfy the accuracycondition (k is the number of requested eigenvalues). This strategy results inbetter performance than applying m � k unwanted eigenvalues as shifts atevery restart.We used a value of �U = 10�7 so that kHyi�yi�ik � �U :We remark that onlythe last (or, equivalently, the largest) 10% of the wanted eigenpairs satis�ed theaccuracy condition. The remaining ones satis�ed the condition to a toleranceof machine precision. This situation occurs because the initial eigenpairs arefurther re�ned as the last eigenpair �nally satis�es the accuracy condition. Forall size experiments, an average of 17 matrix-vector products per eigenvaluewas needed to satisfy the accuracy condition. The eigenvectors yi were alsoorthogonal to machine precision.We emphasize that the cost in time to maintain the full orthogonality of theLanczos basis vectors along with all the other costs associated with the parallelARPACK implementation of IRLM|excluding the matrix-vector products|represented only 2%{3% of the total computation time. Thus, the cost of thecomputation is completely dominated by the cost of a matrix-vector productHc:We also remark that roughly half of the time needed to complete a matrix-vector product involved communication time. A better communication strat-egy may be undertaken with a resulting increase in performance per processorand overall performance. For example, after the initial data distribution in thequantum number representation (6), a further distribution in the grid repre-sentation (7) should be undertaken. (At present, we do not parallelize over theMR grid points because Mi > Ni for i = R; 1; 2 leads to a more complicatedimplementation.)This improved communication strategy would also remove redundant work17



arrays (used on every processor) so that larger problems can be solved fora �xed number of processors. Nonetheless, our goal was to demonstrate thatextremely large eigenvalue problems can be solved on distributed memorymachines while avoiding out-of-core memory methods. A futher data distribu-tion in the grid representation would lead to larger eigenvalue problems solvedmore e�ciently.5 Concluding RemarksWe outlined an approach for obtaining vibrational energy states of four-atomsystems. Our approach utilizes grid and discrete variable representation ideasand a parallel implementation of the IRLM for the calculation of eigenval-ues and eigenvectors. We considered a very challenging problem, the HOCOmolecule, and obtained over �fty accurate eigenstates. Our results, the �rstaccurate determination of the vibrational levels for this system, should alsoprovide a useful benchmark for testing other theoretical methods for eigen-value determination of large systems. While we did not discuss in detail thephysical nature of the eigenstates, we note that one of the strengths of thecurrent procedure is that it yields directly (without need of subsequent calcu-lations) the eigenstates as well as the eigenvalues.The main purpose of our particular parallel strategy was to make possible thedetermination of many vibrational eigenstates of the HOCO problem via theIRLM. As pointed out in the preceding section, communication between pro-cessors, with our current parallel strategy, occupies a signi�cant portion of thematrix-vector product. Therefore, we did not investigate in detail any perfor-mance issues such as the scaling of the method with respect to the number ofprocessors used. Better strategies can be adopted to improve communciationtime, and these will be investigated in future work.We also plan to examine the physical nature of the HOCO eigenstates, extendour results for this system, and consider other interesting four-atom systems.Our current approach focuses on energy states from the ground state up, and,because of the memory requirements, it is di�cult to obtain, say, hundredsof eigenstates for very large problems such as the HOCO example. Thus, aswith the general numerical eigenvalue problem, an important future directionis to devise and implement suitable methods for determining eigenstates inspeci�c energy ranges. For example, the approach outlined here could be ap-plied with a shift-and-invert transformation or Green function techniques [3].Filter-diagonalization methods [3,3] also appear to be interesting alternativeapproaches to the problem. 18
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